
About Lab 10

In this lab you will read in files that contain
many lines of the form

Actor | Movie

As you read the file you form a graph in which
both actors and movies are nodes. There is an
edge of weight 1 from each movie to each actor
in that movie. There is an edge of weight 0 from
each actor to each movie that actor is in.

For example, this might be the contents of such a file:
Jennifer Lawrence | Silver Linings Playbook
Bradley Cooper | Silver Linings Playbook
Chris Tucker | Silver Linings Playbook
Bradley Cooper | The Hangover
Ed Helms | The Hangover
Zach Galifianakis | The Hangover
George Clooney | Up in the Air
Anna Kendrick | Up in the Air
Zach Galifianakis | Up in the Air
Anna Kendrick | New Moon
Kristen Stewart |New Moon

This file generates the following graph (using
abbreviations for the titles and initials for the
actors to save space on this page):

You can see in the graph that there is a path of
length 1 from Jennifer Lawrence to Bradley
Cooper, a path of length 2 from Jennifer
Lawrence to Zach Galifianakis, and one of length
3 from Jennifer Lawrence to George Clooney.
The length of the path is the "Bacon distance"
separating those actors. Furthermore, if you
printed all of the nodes on the path you would
have the sequence of actors and the movies that
link them together.

The bad news is that this graph has many cycles
so we can't use our super-efficient acyclic
shortest path algorithm, but the weights are non-
negative so we can use the efficient Dijkstra
algorithm for finding shortest paths.

On April 19 we talked about implementing graphs
and shortest path algorithms. You might want to
look back at that.

The key ideas were
a) A Vertex class that contains the name of the

node a list of its outgoing edges, the cost of
the shortest path from the source node to
this vertex, and the previous vertex on the
shortest path to it. The latter two fields you
assign while the algorithm is running. A
Vertex also has a boolean variable done,
initialized to false.

(cont'd)

b) An Edge class that has the destination Vertex
of the edge and its weight.

c) A Graph class that contains a
HashMap<String, Vertex> object representing
the graph. You will probably have a
ShortestPath() and a PrintPath() method for
this class.

Building the graph should be easy. For an edge
A | B

look in the HashMap for the graph to get the
Vertex corresponding to string A; call this vertexA.
If there is no such vertex, make one. Do the same
for B, getting vertexB. Then add to the outgoing
edge list for vertexA a new Edge to vertexB of
weight 0, and add to the edge list for vertexB a new
Edge to vertexA of weight 1. You are going to need
a structure (a Set perhaps?) that holds the names
of all of the actors, so add A to this structure if it
isn't already there.

For the ShortestPath method have a
PriorityQueue<Entry>, where an Entry has a Vertex,
its previous vertex, and its distance from the
source. Start it off with (SourceVertex, null, 0).
Each time you poll the PriorityQueue to get an
Entry, check to see if its Vertex X is done. If so,
ignore the Entry. If it isn't done, make it done, and
assign to it the Entry's distance and previous
Vertex. Then walk along X's outgoing edge list and
add an Entry for each non-done node, making X its
previous and making the distance to X plus the cost
of the edge its cost. Continue this until the
PriorityQueue becomes empty.

If you have all of this implemented correctly, you
should find the particular Kevin Bacon methods easy
to implement. "Recentering" is just a matter of
calling the ShortestPath method with a new source.
After you do this you can find the average distance
to each actor by running through your actor set (or
list or whatever), bringing up the Vertex for this via
your graph HashMap, and adding its distance onto
your running total if this distance is less than its
initial value of INFINITY (for which I use
Integer.MAX_VALUE). Divide this by the number of
actors whose distance was less than INFINITY and
you have the average. Other methods are similar.

Note that the lab expects you to implement a small
input loop that allows the user to specify commands and
responds to those commands:

command : find Robert Redford
prints the shortest path from the actor to
the current center

command: recenter Robert Redford
runs the ShortestPath algorithm using this
actor as the source

command: avgdist
finds the average distance from the current
center to each reachable actor,

and so forth.

Here is some data about the various input files

Name Size # Lines # Nodes # Actors

small 79 KB 1,817 1,747 161

top250 560 KB 14,339 12,716 12,466

pre1950 38 MB 966.338 234,022 127,552

post1950 284 MB 6,848,516 2,838,261 2,215,490

no-tv-v 225 MB 5,793,218 2,483,127 1,952,232

full 323 MB 7,814,854 3,043,915 2,314,654

